Difference between revisions of "Table 5-1"

From GARDGuide
m (Reverted edits by WikiSysop (Talk); changed back to last version by 195.77.234.2)
Line 1: Line 1:
  <table border="1" cellspacing="0" cellpadding="2" width="1144">
+
ndlIO3  <a href="http://asyrebhyipoh.com/">asyrebhyipoh</a>, [url=http://nxzaoopffhlt.com/]nxzaoopffhlt[/url], [link=http://adyxlmrpabmm.com/]adyxlmrpabmm[/link], http://myeqqieflxmy.com/
    <tr>
 
      <td width="137" bgcolor="#DDDDDD"><p style="text-align:center; font-weight:bold">Test Type</p></td>
 
      <td width="240" bgcolor="#DDDDDD"><p style="text-align:center; font-weight:bold">Test Methods <br />
 
      and Description</p></td>
 
      <td width="240" bgcolor="#DDDDDD"><p style="text-align:center; font-weight:bold">Use in Geochemical Characterization and Water Quality Prediction</p></td>
 
      <td width="240" bgcolor="#DDDDDD"><p style="text-align:center; font-weight:bold">Advantages</p></td>
 
      <td width="240" bgcolor="#DDDDDD"><p style="text-align:center; font-weight:bold">Limitations</p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="3"><p style="text-align:center;">Grain Size</p></td>
 
      <td valign="top"><p>Sieve</p></td>
 
      <td rowspan="3" valign="top"><p>Predict reactivity on basis of available surface area</p></td>
 
      <td valign="top"><p>Relatively rapid, less expensive</p></td>
 
      <td valign="top"><p>Little information on fine fraction<br />
 
          No information on &quot;reactive&quot; fraction</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p>Hydrometer</p></td>
 
      <td valign="top"><p>Information on fine fraction</p></td>
 
      <td valign="top"><p>More time consuming, more expensive<br />
 
          No information on &quot;reactive&quot; fraction</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p>BET method</p></td>
 
      <td valign="top"><p>Sophisticated technique<br />
 
          Information on &quot;reactive&quot; fraction through measurement of total and specific surface area</p></td>
 
      <td valign="top"><p>Time consuming and expensive<br />
 
          Requires specialized equipment and personnel</p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="3"><p style="text-align:center;">Chemical Composition</strong></p></td>
 
      <td valign="top"><p>Digestion using various acids for analysis by multiple quantitative techniques (ICP-AES, ICP-MS, AAS, NAA) </p></td>
 
      <td rowspan="3" valign="top"><p>Determines total potential load of constituents to environment.</p></td>
 
      <td rowspan="3" valign="top"><p>Comparison against site-specific baseline values and reference geologic materials<br />
 
          Surrogate for and confirmation of ABA parameters (e.g., Ca, S)<br />
 
          Surrogate for and confirmation of mineralogical composition<br />
 
          Evaluation of sample set representativeness</p></td>
 
      <td rowspan="3" valign="top"><p>Instrument-specific interferences<br />
 
          Volatilization<br />
 
          Elevated detection limits due to dilution </p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p>Preparation of bead/powder sample for semi-quantitative analysis by XRF</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p>Portable equipment (XRF)</p></td>
 
    </tr>
 
    <tr>
 
      <td><p style="text-align:center;">Paste pH/Paste Conductivity</strong></p></td>
 
      <td valign="top"><p>Mixture of solution and solid in desired ratio (typically 1:1 to 5:1) followed by pH/electrical conductivity measurement</p></td>
 
      <td valign="top"><p>Determines potential short-term effect of surficial/soluble salts on water quality</p></td>
 
      <td valign="top"><p>Quick, inexpensive, easy to perform in field and laboratory<br />
 
          Can be useful monitoring test for operational mine waste management</p></td>
 
      <td valign="top"><p>Lack of ability to predict long-term conditions <br />
 
          Measures stored acidity </p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="12"><p style="text-align:center;">Acid Base Accounting (ABA)</strong></p></td>
 
      <td valign="top"><p><em><strong>Sobek Method</strong></em><br />
 
          AP commonly from total sulphur<br />
 
          NP by boiling, HCl to pH 0.8-2.5</p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Establish overall acid generating and acid neutralizing capability of a material through independent determination<br />
 
          Identification of the need for and samples that require kinetic testing </p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Most techniques well established<br />
 
          Generally relatively fast and inexpensive<br />
 
          Provide operational screening criteria for mine waste classification and management </p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Provide no information on relative rates of acid generation and neutralization<br />
 
          Assume NP and AG sulfur or minerals are completely available for reaction<br />
 
          Can over- or under-estimate AG or NP depending on method used <br />
 
          NPR cannot be calculated in the absence of sulphur and sulphide<br />
 
          Acid addition dependent on a subjective fizz test which can affect accuracy</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Modified Sobek (Lawrence Method)</strong></em><br />
 
          AP from sulphide sulphur<br />
 
          NP at ambient temperature for 24 hours near boiling, HCl to pH 2.0-2.5</p></td>
 
      <td valign="top">&nbsp;</td>
 
      <td valign="top"><p>Prevent over-estimation of NP or AP relative to Sobek method<br />
 
          Widely used</p></td>
 
      <td>&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Lapakko</strong></em><br />
 
          NP at ambient temperature up to 1 week, H2SO4 to pH 6.0</p></td>
 
      <td>&nbsp;</td>
 
      <td>&nbsp;</td>
 
      <td>&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>BC Research Inc. (BCRI) Initial</strong></em><br />
 
          NP at ambient temperature for 16-24 hours, H2SO4 to pH 3.5</p></td>
 
      <td>&nbsp;</td>
 
      <td>&nbsp;</td>
 
      <td>&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Sobek Siderite Correction</strong></em><br />
 
          as Sobek, but with H2O2</p></td>
 
      <td valign="top"><p>Accounts for complete oxidation of soluble metals during titration</p></td>
 
      <td><p>ASTM draft method uses sulphuric acid Requires no fizz test<br />
 
          Uses pH to determine acid addition requirements<br />
 
          Negative values indicate stored acid</p></td>
 
      <td>&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Net Carbonate Value (NCV),%CO2</strong></em><br />
 
          NCV = ANP + AGP, where<br />
 
          AGP = -1.37[(total sulphur) - (residual sulphur after pyrolysis)]<br />
 
          ANP = 3.67[(total carbon) - (carb on after HCl digestion)] (=see TIC) </p></td>
 
      <td valign="top"><p>Developed by Newmont <br />
 
          Negative ANP and positive AGP must be corrected to zero <br />
 
          Negative NCV indicates acid generation potential<br />
 
          Confirm NCV classification using BC Research Confirmation on zone composites</p></td>
 
      <td valign="top"><p>Standardized as ASTM E-1915 <br />
 
          Waste rock composites characterized with metallurgical suite for ores <br />
 
          Several options for sulphide confirmation depending on mineralogy <br />
 
          Classification system limits uncertainty</p></td>
 
      <td valign="top"><p>Requires carbon-sulphur sophisticated combustion-infrared instrumentation similar to Sobek <br />
 
          Results require conversion for comparison against data from other ABA tests in order to differentiate methods<br />
 
          Metal carbonates overestimate ANP<br />
 
          Does not account for silicate buffering or stored acidity</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Acid Buffering Characteristic Curve</strong></em><em><strong>(ABCC)</strong></em><br />
 
          Titration of sample with acid while continuously monitoring pH </p></td>
 
      <td valign="top"><p>Provides an indication of the portion of the NP that is readily available for neutralization<br />
 
          Used principally in Australia<br />
 
          Similar in nature to the BCRI Initial test</p></td>
 
      <td valign="top"><p>Can be used to identify minerals responsible for neutralization by comparing against ABCCs for reference minerals<br />
 
          Well suited for measuring actual NP vs. total NP<br />
 
          Represents a less conservative method of measuring NP</p></td>
 
      <td valign="top"><p>Only feasible to do on selected samples due to long test time <br />
 
          Limited basis for comparison against results from more &quot;traditional&quot; ABA tests due to limited use to date</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Total Inorganic Carbon (TIC)</strong></em><br />
 
          TIC = (total carbon) - (carbon after HCl digestion)</p></td>
 
      <td>&nbsp;</td>
 
      <td valign="top"><p>Measures NP associated with carbonates only</p></td>
 
      <td valign="top"><p>Only provides carbonate fraction of NP<br />
 
          Can only be used in concert with total NP results<br />
 
          Will include carbonates that do not contribute NP (e.g., siderite)<br />
 
          Not suitable for materials with low NP</p></td>
 
    </tr>
 
    <tr>
 
      <td><p><em><strong>Sulphur</strong></em><em><strong> Analysis</strong></em><br />
 
          (total S, pyritic S, sulphide S, organic S, sulphate S, residual S)<br />
 
          Analysis requires selective digestion of ground sample and measurement of sulphur by infrared or titration after combustion<br />
 
          Removal of non-sulphide and/or targeted sulphide minerals to determine sulphur species</p></td>
 
      <td valign="top"><p>Potential of samples to generate acid<br />
 
          Used as part of ABA testing</p></td>
 
      <td valign="top"><p>Distinguishes between sulphur forms and allows identification of &quot;reactive&quot; sulphur species</p></td>
 
      <td valign="top"><p>Does not confirm the identity of the sulphur-bearing mineral(s)<br />
 
          Can overestimate or underestimate reactive sulphur content</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Chromium Reducible Sulphur</strong></em><br />
 
          Targets acid-volatile sulphur, elemental sulphur and pyrite sulphur through HCl digestion </p></td>
 
      <td rowspan="3" valign="top"><p>Used principally in acid sulphate soils investigations. CRS is also useful for sulphide analysis in coal and coal reject materials</p></td>
 
      <td valign="top"><p>Considered a very reliable method for measuring low-level sulphur concentrations<br />
 
          Only measures sulphide minerals</p></td>
 
      <td rowspan="3" valign="top"><p>Limited basis for direct comparison against results from more &quot;traditional&quot; ABA tests</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Total Actual Acidity (TAA)</strong></em><br />
 
          Titration of KCl extract to pH 5.5 with NaOH</p></td>
 
      <td valign="top"><p>Can define actual acidity in low-pH samples that have oxidized </p></td>
 
    </tr>
 
    <tr>
 
      <td><p><em><strong>Total Potential Acidity (TPA)</strong></em><br />
 
          Heating of KCl extract with H2O2 and titration to pH 5.5 with NaOH</p></td>
 
      <td>&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td rowspan="4"><p style="text-align:center;">Net Acid Generating (NAG)</strong></p></td>
 
      <td valign="top"><p><em><strong>Single addition NAG</strong></em><br />
 
          Reaction with H2O2, measurement of the NAG pH and titration to pH 4.5 and pH 7.0 with NaOH</p></td>
 
      <td rowspan="4" valign="top"><p><u>All Methods:</u><br />
 
          Establishes overall acid generating capability of a material through simultaneous reaction of acid generating and acid neutralizing components<br />
 
          Identification of the need for and samples that require kinetic testing Used in conjunction with ABA or stand alone field test when calibrated</p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Evaluates net acid-base balance<br />
 
          Generally relatively fast and inexpensive<br />
 
          Provides operational screening criteria for mine waste classification and management <br />
 
          Greatly reduces false positive and false negative ABA results <br />
 
          Confirmation results for unreactive materials<br />
 
          In combination with ABA improves prediction reliability and range of uncertainty </p></td>
 
      <td rowspan="4" valign="top"><p><u>All Methods:</u><br />
 
          Does not distinguish between AP and NP<br />
 
          Potential interferences in presence of organic carbon and copper<br />
 
          May underestimate ARD potential in high-sulphide material due to incomplete oxidation (Sequential NAG addresses this limitation)<br />
 
          Quality of H2O2 may vary: some H2O2 brands required pre-treatment for NAG test use </p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Sequential NAG</strong></em><br />
 
          Multi-stage repeat of single-addition NAG tests until NAG pH is greater than 4.5</p></td>
 
      <td valign="top"><p>Overcomes incomplete oxidation in high-sulphur samples<br />
 
          Can provide qualitative estimate of approximate lag time to acid generation</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Extended Boil and Calculated NAG</strong></em><br />
 
          As single addition NAG, but accounts for potential effect from organic matter<br />
 
          Extended boiling and assay of the NAG solution for S, Ca, Mg, Cl, Na and K </p></td>
 
      <td valign="top"><p>Accounts for potential effect from organic matter</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Kinetic NAG</strong></em><br />
 
          As single addition NAG but with monitoring of temperature and pH during reaction with H2O2</p></td>
 
      <td valign="top"><p>Provides qualitative estimate of reaction kinetics and lag time (i.e., weeks, months, years)</p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="6"><p style="text-align:center;">Mineralogical Composition</strong></p></td>
 
      <td valign="top"><p><em><strong>Visual/Optical Microscopy</strong></em><br />
 
          Hand lens, binocular microscope</p></td>
 
      <td rowspan="6" valign="top"><p><u>All Methods:</u><br />
 
          Identify primary and secondary minerals that could affect acid generation potential and contact water quality<br />
 
          With increasing sophistication of techniques, also information on texture, mineral composition and morphology to evaluate mineral reactivity and availability for weathering reactions that can affect acid generation and leaching potential </p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Provide information on acid generating potential and NP, availability of minerals for weathering<br />
 
          Corroborate lithologic information<br />
 
          Essential for understanding of geochemical controls on contact water quality and as inputs to geochemical model simulations </p></td>
 
      <td valign="top"><p>Qualitative</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>X-ray diffraction (XRD)</strong></em><br />
 
          Qualitative or semi-quantitative (Rietveld) analysis</p></td>
 
      <td valign="top">&nbsp;</td>
 
      <td valign="top"><p>Semi-quantitative at best</p>
 
        <p>High detection limit ~1%</p>
 
        <p>Capable of identifying crystalline minerals only</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Petrographic analysis</strong></em><br />
 
          Reflection or transmission petrographic microscope</p></td>
 
      <td valign="top">&nbsp;</td>
 
      <td rowspan="3" valign="top"><p>Requires sophisticated instrumentation and specialized personnel for interpretation</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>SEM/EDS</strong></em><br />
 
          Electron beam scan for mineral identification</p></td>
 
      <td valign="top"><p>Surpasses combustion-infrared methods in quantifying trace sulfide mineral concentrations </p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Electron microprobe</strong></em><br />
 
          Like SEM but optimized for chemical analysis </p></td>
 
      <td valign="top">&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Portable equipment (PIMA)</strong></em><br />
 
          Infrared analyzer</p></td>
 
      <td valign="top"><p>Portable<br />
 
          Particularly suited for hydrated minerals</p></td>
 
      <td valign="top"><p>Not capable of identifying all minerals</p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="17"><p style="text-align:center;">Short-Term Leach Tests</strong></p></td>
 
      <td valign="top"><p><em><strong>SPLP (Synthetic Precipitation Leaching Procedure)</strong></em><br />
 
          US EPA Method 1312<br />
 
          20:1 solution to solid<br />
 
          Deionized water or dilute sulphuric/nitric acid to pH 4.2 or 5.0<br />
 
          &lt; 9.5 mm<br />
 
          18 &plusmn; 2 hours<br />
 
          Variant: <em><strong>Standard Test Method for Shake Extraction of Mining Waste by the Synthetic Precipitation Leaching Procedure</strong></em><br />
 
          ASTM D 6234</p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Measures readily soluble constituents of mine and process wastes</p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Provides indication of short-term leaching of soluble constituents.<br />
 
          Identifies readily dissolvable constituents</p></td>
 
      <td valign="top"><p><u>All Methods:</u><br />
 
          Provides no information on transient processes and long-term conditions. <br />
 
          Only simulates short-term interaction<br />
 
          High liquid to solid ratio may underestimate leachability<br />
 
          Grain size reduction may increase reactivity</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>TCLP (Toxicity Characteristic Leaching Procedure)</strong></em><br />
 
          US EPA Method 1311<br />
 
          20:1 solution to solid ratio<br />
 
          acetic acid/acetate buffer<br />
 
          &lt; 9.5 mm<br />
 
          18 &plusmn; 2 hours </p></td>
 
      <td valign="top"><p>Used to determine if waste is hazardous under RCRA<br />
 
          Intended to simulate municipal landfill containing organic wastes</p></td>
 
      <td valign="top"><p>Applicable standards available</p></td>
 
      <td valign="top"><p>Use of acetic acid/acetate buffers not appropriate for mining applications, Short list of metals evaluated </p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Meteoric Water Mobility Procedure (MWMP)</strong></em><br />
 
          1:1 solution to solid ratio<br />
 
          reagent-grade water<br />
 
          &lt; 2 inch<br />
 
          &lt; 48 hours</p></td>
 
      <td valign="top"><p>Same as for SPLP<br />
 
          Primarily used in Nevada</p></td>
 
      <td valign="top"><p>Quasi-dynamic test<br />
 
          More realistic than SPLP due to higher solid to solution ratio, longer duration and coarser material<br />
 
          Applicable standards available</p></td>
 
      <td valign="top"><p>Weaker lixiviant than acidified SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>California Waste Extraction Test (WET)</strong></em><br />
 
          10:1 solution to solid ratio<br />
 
          dilute sodium citrate solution<br />
 
          &lt; 2 mm<br />
 
          48 hours </p></td>
 
      <td valign="top"><p>Intended to simulate municipal landfill containing organic wastes <br />
 
          Primarily used in California</p></td>
 
      <td valign="top"><p>Lower liquid to solid ratio and longer test duration than SPLP and TCLP<br />
 
          Applicable standards available</p></td>
 
      <td valign="top"><p>Use of sodium citrate not appropriate for mining applications</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Modified Test for Shake Extraction of Solid Waste with Water</strong></em><br />
 
          4:1 solution to solid ratio<br />
 
          reagent-grade water adjusted to pH 5.5 with carbonic acid<br />
 
          18 hours </p></td>
 
      <td valign="top"><p>Same as for SPLP</p></td>
 
      <td valign="top"><p>Lower liquid to solid ratio than SPLP</p></td>
 
      <td valign="top">&nbsp;</td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>British Columbia Special Waste Extraction Procedure (BC SWEP)</strong></em><br />
 
          20:1 solution to solid ratio<br />
 
          acetic acid<br />
 
          &lt; 9.5 mm<br />
 
          24 hours<br />
 
          <em><strong>Modification for mining wastes</strong></em> <br />
 
          3:1 solution to solid ratio<br />
 
          dilute hydrochloric acid </p></td>
 
      <td valign="top"><p>Similar to TCLP for normal procedure<br />
 
          Similar to SPLP and ASTM for modified procedure</p></td>
 
      <td valign="top"><p>Modified: lower solution to solid ratio than SPLP and ASTM</p></td>
 
      <td valign="top"><p>Intended to simulate municipal landfill containing organic wastes <br />
 
          Same as for SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>NAG Test with Leachate Analysis</strong></em><br />
 
          100:1 solution to solid ratio<br />
 
          15% H2O2 solution<br />
 
          &lt; 75 um<br />
 
          Until boiling or effervescing ceases</p></td>
 
      <td valign="top"><p>Can be used to determine total potential loading or release of metals after complete oxidation of reactive sulphides</p></td>
 
      <td valign="top"><p>&quot;Short-cut&quot; to conditions representative of complete sulphide oxidation</p></td>
 
      <td valign="top"><p>Leachate contains all reaction products from sulphide oxidation<br />
 
          High solution to solid ratio<br />
 
          Significant grain size reduction</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Characterization of Waste - Leaching - Compliance Test for Leaching of Granular Materials and Sludge</strong></em><br />
 
          EN 12457 1<br />
 
          One stage test<br />
 
          2:1 solution to solid ratio<br />
 
          &lt; 4 mm<br />
 
          EN 12457-2<br />
 
          One stage test<br />
 
          10:1 solution to solid ratio<br />
 
          &lt; 4 mm<br />
 
          EN 12457-3<br />
 
          Two stage test<br />
 
          2:1 and 8:1 solution to solid ratios<br />
 
          &lt; 4 mm<br />
 
          EN 12457-4<br />
 
          One stage test<br />
 
          10:1 solution to solid ratio<br />
 
          &lt; 10 mm<br />
 
          All Methods:<br />
 
          distilled/demineralized/deionized water<br />
 
          24 hours</p></td>
 
      <td valign="top"><p><u>All European Union (EU) Methods:</u><br />
 
          Basic characterization: obtain information on leaching behavior and characteristics<br />
 
          Compliance: determine whether waste complies with specific reference values </p></td>
 
      <td valign="top"><p><u>All European Union (EU) Methods:</u><br />
 
          Test protocol is adjusted based on information needs and site-specific conditions<br />
 
          Applicable standards available (expressed as loadings) </p></td>
 
      <td valign="top"><p>Same as for SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Characterization of Waste - Leaching Behavior Tests - Up-flow Percolation Test</strong></em><br />
 
          CEN/TS 14405<br />
 
          10:1 solution to solid ratio<br />
 
          &lt; 10 mm<br />
 
          demineralized water<br />
 
          duration as needed </p></td>
 
      <td valign="top"><p>Used to determine leachability of a waste under hydraulically dynamic conditions (EU)</p></td>
 
      <td valign="top"><p>Test can be used to establish the distinction between various release mechanisms (e.g., first flush vs. steady state leaching)</p></td>
 
      <td valign="top"><p>Same as for MWMP<br />
 
          Test developed for landfills</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Characterization of Waste - Leaching Behavior Tests - Influence of pH on Leaching with Initial Acid/Base</strong></em> Addition<br />
 
          CEN/TS 14429<br />
 
          10:1 solution to solid ratio<br />
 
          at least 8 individual solutions of different pH using nitric acid or sodium hydroxide covering the range pH 4-12<br />
 
          95% &lt; 1 mm<br />
 
          48 hours</p></td>
 
      <td valign="top"><p>Used to determine influence of pH on waste leachability and buffering capacity (EU)</p></td>
 
      <td valign="top"><p>Leachate analyzed for inorganic constituents (as opposed to prCEN/TS 15364)<br />
 
          pH is allowed to fluctuate after initial addition of acid or base<br />
 
          Allows evaluation of buffering capacity</p></td>
 
      <td valign="top"><p>Same as for SPLP<br />
 
          Test developed for landfills</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Characterization of Waste - Leaching Behavior Tests - Influence of pH on Leaching with Continuous pH-Control</strong></em><br />
 
          EN 14997<br />
 
          10:1 solution to solid ratio<br />
 
          at least 8 individual solutions of different pH using nitric acid or sodium hydroxide covering the range pH 4-12<br />
 
          95% &lt; 1 mm<br />
 
          48 hours</p></td>
 
      <td valign="top"><p>Used to determine influence of pH on waste leachability (EU)</p></td>
 
      <td valign="top"><p>Leachate analyzed for inorganic constituents (as opposed to prCEN/TS 15364)<br />
 
          pH is maintained at constant value after initial addition of acid or base<br />
 
          Allows evaluation of leachability under constant pH</p></td>
 
      <td valign="top"><p>Same as for SPLP<br clear="all" />
 
          Test developed for landfills</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Characterization of Waste - Leaching Behavior Tests - Acid and Base Neutralization Capacity Test</strong></em><br />
 
          CEN/TS 15364<br />
 
          10:1 solution to solid ratio<br />
 
          at least 8 individual solutions of different pH using nitric acid or sodium hydroxide covering the range pH 4-12<br />
 
          95% &lt; 1 mm<br />
 
          48 hours </p></td>
 
      <td valign="top"><p>Used to determine final pH of a waste as well as assess consequences of external influences (carbonation, oxidation) on the final pH (EU)</p></td>
 
      <td valign="top">&nbsp;</td>
 
      <td valign="top"><p>Same as for SPLP<br />
 
          Test developed for landfills<br />
 
          Leachate only analyzed for pH</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Lixivia&ccedil;&atilde;o de Res&iacute;duos</strong></em><br />
 
          NBR 10005<br />
 
          16:1 solution to solid ratio<br />
 
          acetic acid<br />
 
          &lt; 9.5 mm<br />
 
          24 hours</p></td>
 
      <td valign="top"><p>Used to determine if mine waste is hazardous under solid waste regulations (Brazil)<br />
 
          Intended to simulate municipal landfill containing organic wastes</p></td>
 
      <td valign="top"><p>Applicable standards available</p></td>
 
      <td valign="top"><p>Use of acetic acid not appropriate for mining applications</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Solubiliza&ccedil;&atilde;o de Res&iacute;duos</strong></em><br />
 
          NBR 10006<br />
 
          4:1 solution to solid ratio<br />
 
          deionized water<br />
 
          grain size not specified<br />
 
          7 d<strong><span style="font-family:'Arial','sans-serif'; ">ays</strong></p></td>
 
      <td valign="top"><p>Used to evaluate potential for impacts to groundwater by comparison against groundwater quality standards (Brazil)</p></td>
 
      <td valign="top"><p>Applicable standards available<br />
 
          Lower solution to solid ratio and longer duration than SPLP</p></td>
 
      <td valign="top"><p>Same as for SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Test Method Standard for Leaching Toxicity of Solid Wastes - Roll Over Leaching Procedure</strong></em><br />
 
          GB5086.1-1997<br />
 
          10:1 solution to solid ratio<br />
 
          deionized/distilled water<br />
 
          &lt; 5 mm<br />
 
          18 hours </p></td>
 
      <td valign="top"><p>Used to determine if mine waste is hazardous under solid waste regulations by comparison against Integrated Wastewater Discharge Standards (China)</p></td>
 
      <td valign="top"><p>Applicable standards available</p></td>
 
      <td valign="top"><p>Same as for SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Test Method Standard for Leaching Toxicity of Solid Wastes - Horizontal Vibration Extraction Procedure</strong></em><br />
 
          GB5086.2-1997<br />
 
          10:1 solution to solid ratio<br />
 
          deionized/distilled water<br />
 
          &lt; 3 mm<br />
 
          24 hours </p></td>
 
      <td valign="top"><p>Used to determine if mine waste is hazardous under solid waste regulations by comparison against Integrated Wastewater Discharge Standards (China)</p></td>
 
      <td valign="top"><p>Applicable standards available</p></td>
 
      <td valign="top"><p>Same as for SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Sequential Extraction</strong></em><strong><em><br />
 
          </em></strong>Variety of methods using different extractants to evaluate leachability from targeted fractions of mine waste<br />
 
          Methods may vary depending on analyte of interest and target fraction of interest</p></td>
 
      <td valign="top"><p>To evaluate associations between constituents of interests and different fractions of the solid<br />
 
          Allows for determination of the labile portion of the solid phase</p></td>
 
      <td valign="top"><p>Understanding associations of constituents with different fractions of the solid assists in understanding geochemical conditions under which they may be released to the environment</p></td>
 
      <td valign="top"><p>Involved procedure<br />
 
          Many reagents<br />
 
          Most reagents not uniquely selective to targeted fraction<br />
 
          Use of some reagents precludes analysis of certain constituents<br />
 
          No applicable standards</p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="2"><p style="text-align:center;">Long-Term Leach Tests</strong></p></td>
 
      <td valign="top"><p><em><strong>Humidity Cell Test (HCT)</strong></em><br />
 
          ASTM D5744-96<br />
 
          0.5:1 or 1:1 solution to solid ratio<br />
 
          deionized water<br />
 
          different dimensions for &lt; 6.3 mm and &lt;150 &mu;m<br />
 
          weekly cycle of 3-day alternating dry air and wet air followed by leach<br />
 
          generally 20-week minimum but can run longer<br />
 
          weekly analysis of diagnostic ARD parameters (e.g., pH, SC, Fe, SO4, Eh, Ca, Mg, alkalinity)<br />
 
          generally less-frequent analysis for comprehensive metals and major ions </p></td>
 
      <td valign="top"><p>To determine long-term weathering rates (sulphide oxidation, dissolution of neutralizing minerals, trace metal release) under oxygenated conditions<br />
 
          To evaluate lag time to acid generation<br />
 
          To provide reaction rates for geochemical modeling</p></td>
 
      <td valign="top"><p>Standardized test<br />
 
          Provides kinetic and steady-state leaching information and is recommended test for determination of weathering rates of primary minerals</p></td>
 
      <td valign="top"><p>Not suitable for evaluation of saturated materials<br />
 
          Grain size reduction may increase reactivity<br />
 
          Potential for channel flow<br />
 
          High leaching rate can affect reaction kinetics due to higher pH and undersaturation with secondary minerals </p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Column Test</strong></em><br />
 
          variable solution to solid ratio<br />
 
          generally deionized water, groundwater or natural precipitation<br />
 
          generally &lt; 25 mm<br />
 
          variable dimension, but generally larger than HCT<br />
 
          leaching cycles can vary and include maintaining water over sample, alternate flooding and draining, and recirculating leachate </p></td>
 
      <td valign="top"><p>As above, but can simulate leaching in variably saturated or oxygen-deficient conditions<br />
 
          To simulate environmental performance of amended mine wastes and/or cover designs</p></td>
 
      <td valign="top"><p>Frequently closer to field conditions than HCT<br />
 
          Can simulate different degrees of saturation<br />
 
          Can simulate remedial alternatives<br />
 
          Simulates combined weathering of primary and secondary minerals</p></td>
 
      <td valign="top"><p>Not standardized<br />
 
          Potential for channeling through preferential flowpaths<br />
 
          Grain size reduction may increase reactivity<br />
 
          Without entire load of weathering products from primary minerals, reaction rates for primary minerals and extent of secondary precipitation cannot be measured</p></td>
 
    </tr>
 
    <tr>
 
      <td rowspan="3"><p style="text-align:center;">Field Tests</strong></p></td>
 
      <td valign="top"><p><em><strong>Wall Washing</strong></em><br />
 
          1L rinse of 1 &times; 1 m surface area<br />
 
          distilled water</p></td>
 
      <td rowspan="3" valign="top"><p><u>All Methods:</u><br />
 
          To estimate short and long-term potential of mine materials to generate acid and leach metals using on-site materials </p></td>
 
      <td valign="top"><p>Rapid<br />
 
          Measures leachate quality from in situ material<br />
 
          Can be repeated to obtain temporal component</p></td>
 
      <td valign="top"><p>May be difficult to establish accurate mass balance due to loss of solution</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>US Geological Survey Field Leach Test (FLT)</strong></em><br />
 
          20:1 solution to solid ratio<br />
 
          deionized water<br />
 
          &lt; 2 mm<br />
 
          5 minutes<br />
 
          <a href="http://pubs.usgs.gov/tm/2007/05D03/" title="http://pubs.usgs.gov/tm/2007/05D03/">http://pubs.usgs.gov/tm/2007/05D03/</a></p></td>
 
      <td valign="top"><p>Can be performed in the field<br />
 
          Rapid and inexpensive method to characterize chemical reactivity and water-soluble fraction<br />
 
          Field screening method that can be used as surrogate for SPLP due to similarity in approach and results</p></td>
 
      <td valign="top"><p>Same as for SPLP</p></td>
 
    </tr>
 
    <tr>
 
      <td valign="top"><p><em><strong>Field Cells/Test Pads/Mine Facilities</strong></em><br />
 
          Monitoring of increasingly larger volumes of mine wastes<br />
 
          Ambient precipitation or irrigation<br />
 
          Degree of grain size reduction required decreases with increasing size of test<br />
 
          Test duration months to years </p></td>
 
      <td valign="top"><p>Test are conducted under actual field conditions<br />
 
          Can collect samples after transient events<br />
 
          Larger sample size results in enhanced test charge representativeness<br />
 
          With increasing test size, effects from grain size reduction, sample heterogeneity and preferential pathways reduced<br />
 
          With increasing test size, empirical results increasingly directly applicable to mine facility</p></td>
 
      <td valign="top"><p>Comprehensive characterization of test sample may not be feasible<br />
 
          Complete understanding of water balance may not be feasible<br />
 
          Complexity of tested system may limit interpretive and predictive value of observations</p></td>
 
    </tr>
 
  </table>
 

Revision as of 23:26, 15 April 2012

ndlIO3 <a href="http://asyrebhyipoh.com/">asyrebhyipoh</a>, [url=http://nxzaoopffhlt.com/]nxzaoopffhlt[/url], [link=http://adyxlmrpabmm.com/]adyxlmrpabmm[/link], http://myeqqieflxmy.com/